3.9: Exponential & Logarithmic Functions

Objective: Given an exponential or logarithmic function, find its derivative function algebraically.

Relationship Between e^x and $\ln x$

If $y = e^x$, then $x = \ln y$

e is an irrational number equal to 2.71828182845... and is used as a base for natural exponential functions, such as $f(x) = e^x$.

\ln is a natural logarithm with e as its base ($\ln = \log_e$) and is used to determine the exponents of natural exponential functions. Natural logarithmic functions take the form, $f(x) = \ln x$.

Natural exponential functions and natural logarithmic functions—both with respect to x—are inverses (i.e. If $f(x) = \ln x$, then $f^{-1}(x) = e^x$; and if $f(x) = e^x$, then $f^{-1}(x) = \ln x$). Therefore, their operations cancel each other out. For example,

\[
\ln e^x = x \quad \text{and} \quad e^{\ln x} = x
\]

Natural Exponential Function & Derivative

\[
\frac{d}{dx}(e^x) = e^x
\]

Remember to use the Chain Rule when appropriate

Example 1: Differentiate a Natural Exponential Function

Find $f'(x)$ if $f(x) = e^{\cos x}$. Confirm the answer by graphing the algebraic and numerical derivatives on the same screen.
Natural Logarithm & Derivative

\[
\frac{d}{dx} (\ln x) = \frac{1}{x}
\]

The derivative of the natural logarithm function is the reciprocal function.

Example 2: Differentiate a Natural Logarithm Function

Find \(f'(x) \) if \(f(x) = \ln x^3 \). Confirm the answer by comparing values with the algebraic and numerical derivatives.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = \ln x^3)</th>
<th>(f'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>#UNDEF #UNDEF</td>
<td>#UNDEF</td>
</tr>
<tr>
<td>1</td>
<td>3.</td>
<td>3.</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>1.</td>
<td>1.</td>
</tr>
<tr>
<td>4</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>0.4285...</td>
<td>0.4285..</td>
</tr>
<tr>
<td>8</td>
<td>0.375</td>
<td>0.375</td>
</tr>
<tr>
<td>9</td>
<td>0.3333...</td>
<td>0.3333..</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Other Exponential Functions & Derivative

\[
\frac{d}{dx} (b^x) = b^x \ln b
\]

Example 3: Differentiate an Exponential Function

Find \(f'(x) \) if \(f(x) = 10(1.05^x) \).

Other Logarithmic Functions & Derivative

Recall that a logarithm is an exponent. (e.g., if \(3^x = 9 \), then the exponent \(x = \log_3 9 \).)

Definition of Logarithm:

\(a = \log_b c \) if and only if \(b^a = c \), \(b > 0 \), and \(b \neq 1 \), where \(b \) is the base, \(a \) is the exponent, and \(c \) is the “answer” to \(b^a \).
Properties of Logarithmic Functions:

- **Log of a Power**: \(\log_b (c^d) = d \cdot \log_b c \)
- **Log of a Product**: \(\log_b (cd) = \log_b c + \log_b d \)
- **Log of a Quotient**: \(\log_b \left(\frac{c}{d} \right) = \log_b c - \log_b d \)

Derivative of a Logarithmic Function:

\[
\frac{d}{dx} (\log_b x) = \frac{1}{x \ln b}
\]

Example 4: Differentiate a Logarithmic Function

Find \(f'(x) \) if \(f(x) = \log_4 (x^2 - 9x) \)

Example 5: Using the Logarithmic Properties to Differentiate

Find \(f'(x) \) if \(f(x) = \log_5 \left(\frac{2x+1}{x^2+3} \right) \)

Example 6: CHALLENGE

Find \(f'(x) \) if \(f(x) = [\log_4 (1 + e^x)]^2 \)